Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol Chem ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661477

RESUMO

Octahydro-tetramethyl-naphthalenyl-ethanone (OTNE) is a high-production volume fragrance material used in various down-the-drain consumer products. To assess aquatic risk, the Research Institute for Fragrance Materials (RIFM) uses a tiered data-driven framework to determine a risk characterization ratio, where the ratio of the predicted-environmental concentration to the predicted-no-effect concentration (PNEC) of <1 indicates an acceptable level of risk. Owing to its high production volume and the conservative nature of the RIFM framework, RIFM identified the need to utilize a species sensitivity distribution (SSD) approach to reduce the PNEC uncertainty for OTNE. Adding to the existing Daphnia magna, Danio rerio, and Desmodesmus subspicatus chronic studies, eight new chronic toxicity studies were conducted on the following species: Navicula pelliculosa, Chironomus riparius, Lemna gibba, Ceriodaphnia dubia, Hyalella azteca, Pimephales promelas, Anabaena flos-aquae, and Daphnia pulex. All toxicity data were summarized as chronic 10% effect concentration estimates using the most sensitive biological response. Daphnia magna was the most sensitive (0.032 mg/L), and D. subspicatus was the least sensitive (>2.6 mg/L, the OTNE solubility limit). The 5th percentile hazardous concentration (HC5) derived from the cumulative probability distribution of the chronic toxicity values for the 11 species was determined to be 0.0498 mg/L (95% confidence interval 0.0097-0.1159 mg/L). A series of "leave-one-out" and "add-one-in" simulations indicated the SSD was stable and robust. Add-one-in simulations determined that the probability of finding a species sensitive enough to lower the HC5 two- or threefold was 1/504 and 1/15,300, respectively. Given the high statistical confidence in this robust SSD, an additional application factor protection is likely not necessary. Nevertheless, to further ensure the protection of the environment, an application factor of 2 to the HC5, resulting in a PNEC of 0.0249 mg/L, is recommended. When combined with environmental exposure information, the overall hazard assessment is suitable for a probabilistic environmental risk assessment. Environ Toxicol Chem 2024;00:1-12. © 2024 SETAC.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38597774

RESUMO

The purpose of this research was to use polyvinyl alcohol (PVOH) 18-88 as a case study to evaluate the environmental fate, ecotoxicity, and overall safety profile of water-soluble, nonmodified PVOH polymers used in detergent films. An OECD 303A Wastewater Treatment Plant Simulation Study was conducted with dissolved organic carbon as the analytical endpoint to evaluate the removal of PVOH 18-88 during wastewater treatment. During the plateau phase, high levels of removal due to biodegradation were observed (average 97.4 ± 7.1, range: 88%-116%). The OECD 303A study quantitatively verified that surface water is the dominant receiving compartment for PVOH 18-88 post wastewater treatment. Acute algae, invertebrate, and fish embryo (fish embryo acute toxicity test [FET]) ecotoxicity studies quanitified the 50% lethal/effect concentration (L/EC50) for PVOH 18-88. Due to the potential for the chorion to impact PVOH 18-88 bioavailability, both chorionated and dechorionated FET tests were conducted. L/EC50 > 1000 mg/L for FET (chorionated and dechorionated), invertebrate, and algae were observed. The Sustainable Futures (US) and REACH (EU) frameworks were used to evaluate environmental risk. For the US assessment, the Exposure and Fate Assessment Screening Tool was used to predict the single day lowest flow over a 10-year period (1Q10) surface water concentration and the seven consecutive days of lowest flow over a 10-year period (7Q10) surface water concentration and compared with acute and chronic concentrations of concern. For the EU assessment, the European Union System for the Evaluation of Substances was used to predict local and regional exposure concentrations and compared to the predicted no effect concentration. For both regulatory assessments, the exposure concentrations were >2 orders of magnitude below the effect concentrations. Integr Environ Assess Manag 2024;00:1-13. © 2024 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

3.
Nat Neurosci ; 26(7): 1295-1307, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37308660

RESUMO

Neural activity is modulated over different timescales encompassing subseconds to hours, reflecting changes in external environment, internal state and behavior. Using Drosophila as a model, we developed a rapid and bidirectional reporter that provides a cellular readout of recent neural activity. This reporter uses nuclear versus cytoplasmic distribution of CREB-regulated transcriptional co-activator (CRTC). Subcellular distribution of GFP-tagged CRTC (CRTC::GFP) bidirectionally changes on the order of minutes and reflects both increases and decreases in neural activity. We established an automated machine-learning-based routine for efficient quantification of reporter signal. Using this reporter, we demonstrate mating-evoked activation and inactivation of modulatory neurons. We further investigated the functional role of the master courtship regulator gene fruitless (fru) and show that fru is necessary to ensure activation of male arousal neurons by female cues. Together, our results establish CRTC::GFP as a bidirectional reporter of recent neural activity suitable for examining neural correlates in behavioral contexts.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Masculino , Feminino , Drosophila/fisiologia , Proteínas de Drosophila/genética , Sistema Nervoso , Neurônios , Comportamento Social , Corte , Drosophila melanogaster/fisiologia , Comportamento Sexual Animal/fisiologia , Proteínas do Tecido Nervoso/genética , Fatores de Transcrição/genética
4.
Environ Res ; 231(Pt 3): 116282, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37257746

RESUMO

Cationic polymer (CP) ecotoxicity is important to understand and investigate as they are widely used in industrial and consumer applications and have shown toxic effects in some aquatic organisms. CPs are identified as "polymers of concern" and are to be prioritized in upcoming regulatory reviews, (e.g., REACH). Algae have generally been found to be the most sensitive trophic level to CP. This study aimed at elucidating the magnitude of cationic polyquaternium toxicity towards algae and to understand key toxicological drivers. A suite of polyquaterniums with varying charge density (charged nitrogen moieties) and molecular weight were selected. Highly charged polyquaternium-6 and -16 were toxic towards the freshwater green microalgae Raphidocelis subcapitata with ErC50-values ranging between 0.12 and 0.41 mg/L. Lower charge density polyquaternium-10 materials had much lower toxicity with ErC50 > 200 mg/L, suggesting that charge density is an important driver of algal toxicity. These levels of toxicity were in line with historic CP data in literature. Algal agglomeration was observed in all tests but was not linked with impacts on algal growth rate. However, agglomeration can pose challenges in the technical conduct of tests and can impair interpretation of results. The toxicity mitigation potential of humic acid was also explored. The addition of 2-20 mg/L humic acid completely mitigated PQ6 and PQ16 toxicity at concentrations higher than clean water ErC50-values. CP toxicity mitigation has also been observed in fish and invertebrate tests, suggesting that CP mitigation should be accounted for in all trophic levels within an environmental safety framework.


Assuntos
Clorófitas , Poluentes Químicos da Água , Animais , Substâncias Húmicas , Poluentes Químicos da Água/toxicidade , Polímeros/toxicidade , Água Doce , Cátions/toxicidade
5.
Integr Environ Assess Manag ; 19(5): 1220-1234, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35049115

RESUMO

Acute fish toxicity (AFT) is a key endpoint in nearly all regulatory implementations of environmental hazard assessments of chemicals globally. Although it is an early tier assay, the AFT assay is complex and uses many juvenile fish each year for the registration and assessment of chemicals. Thus, it is imperative to seek animal alternative approaches to replace or reduce animal use for environmental hazard assessments. A Bayesian Network (BN) model has been developed that brings together a suite of lines of evidence (LoEs) to produce a probabilistic estimate of AFT without the testing of additional juvenile fish. Lines of evidence include chemical descriptors, mode of action (MoA) assignment, knowledge of algal and daphnid acute toxicity, and animal alternative assays such as fish embryo tests and in vitro fish assays (e.g., gill cytotoxicity). The effort also includes retrieval, assessment, and curation of quality acute fish toxicity data because these act as the baseline of comparison with model outputs. An ideal outcome of this effort would be to have global applicability, acceptance and uptake, relevance to predominant fish species used in chemical assessments, be expandable to allow incorporation of future knowledge, and data to be publicly available. The BN model can be conceived as having incorporated principles of tiered assessment and whose outcomes will be directed by the available evidence in combination with prior information. We demonstrate that, as additional evidence is included in the prediction of a given chemical's ecotoxicity profile, both the accuracy and the precision of the predicted AFT can increase. Ultimately an improved environmental hazard assessment will be achieved. Integr Environ Assess Manag 2023;19:1220-1234. © 2022 SETAC.


Assuntos
Embrião não Mamífero , Peixes , Animais , Testes de Toxicidade Aguda , Teorema de Bayes , Embrião não Mamífero/metabolismo , Confiabilidade dos Dados , Medição de Risco
6.
Integr Environ Assess Manag ; 19(2): 312-325, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35649733

RESUMO

Historically, polymers have been excluded from registration and evaluation under the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) program, the European chemical management program. Recently, interest has increased to include polymers. A tiered registration system has been envisioned and would begin with classes of polymers of greater interest based on certain properties. Cationic polymers are one such class. There is a pressing need to understand the quality and limitations of historical cationic polymer studies and to identify key sources of uncertainty in environmental hazard assessments so we can move toward scientifically robust analyses. To that end, we performed a critical review of the existing cationic polymer environmental effects literature to evaluate polymer characterization and test methodologies to understand how these parameters may affect test interpretation. The relationship between physicochemical parameters, acute and chronic toxicity, and relative trophic level sensitivity were explored. To advance our understanding of the environmental hazard and subsequent risk characterization of cationic polymers, there is a clear need for a consistent testing approach as many polymers are characterized as difficult-to-test substances. Experimental parameters such as dissolved organic carbon and solution renewal approaches can alter cationic polymer bioavailability and toxicity. It is recommended that OECD TG 23 "Aqueous-Phase Aquatic Toxicity Testing of Difficult Test Substances" testing considerations be applied when conducting environmental toxicity assays with cationic polymers. Integr Environ Assess Manag 2023;19:312-325. © 2021 SETAC.


Assuntos
Substâncias Perigosas , Polímeros , Polímeros/toxicidade , Testes de Toxicidade , Medição de Risco/métodos
7.
Environ Toxicol Chem ; 41(9): 2259-2272, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35703088

RESUMO

Cationic polymers are considered by the scientific and regulatory communities as a group of greater interest amongst the polymers in commerce. As a category, relatively little hazard information is available in the public literature. Very few examples exist of published, high-quality polymer characterization and quantification of exposure. In the present study we describe a series of fish embryo toxicity (FET) and fish gill cytotoxicity assays used to establish a baseline understanding of several representative polyquaternium categories (PQ-6, PQ-10, PQ-16) in animal alternative models, accompanied by high-quality analytical characterization. Materials were chosen to encompass a range of molecular weights and charge densities to determine the influence of test material characteristics on toxicity. Both chorionated and dechorionated FET assays were generally similar to published acute fish toxicity data. Toxicity was correlated with cationic polymer charge density, and not with molecular weight, and was a combination of physical effects and likely toxicity at the site of action. Toxicity could be ameliorated by humic acid in a dose-dependent manner. Fish gill cytotoxicity results were orders of magnitude less sensitive than FET test responses. Environ Toxicol Chem 2022;41:2259-2272. © 2022 SETAC.


Assuntos
Embrião não Mamífero , Brânquias , Animais , Ecotoxicologia , Peixes , Polímeros/toxicidade , Testes de Toxicidade Aguda/métodos
8.
Environ Toxicol Chem ; 41(1): 134-147, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34918372

RESUMO

The cladocerans Daphnia magna and Ceriodaphnia dubia have been used for decades to assess the hazards of chemicals and effluents, but toxicity data for these species have traditionally been treated separately. Numerous standard acute and chronic test guidelines have been developed for both species. In the present study, data were compiled and curated for acute survival (48 h) and growth and reproduction tests with D. magna (21 days chronic) and C. dubia (7 days chronic) toxicity assays. Orthogonal regressions were developed to statistically compare the acute and chronic sensitivity of D. magna and C. dubia across a diversity of chemicals and modes of action. Acute orthogonal regressions between D. magna and D. pulex, a widely accepted surrogate species, were used to set a data-driven benchmark for what would constitute a suitable D. magna surrogate. The results indicate that there is insufficient evidence to suggest a difference in acute or chronic sensitivity of D. magna and C. dubia in standard toxicity tests. Further, the variability in the acute D. magna and C. dubia regressions were of the same magnitude as that in D. magna and D. pulex regressions. Slope and y-intercept values were also comparable. The absence of significant differences in toxicity values suggests similar species sensitivity in standard tests across a range of chemical classes and modes of action. Environ Toxicol Chem 2022;41:134-147. © 2021 SETAC.


Assuntos
Cladocera , Poluentes Químicos da Água , Animais , Daphnia , Reprodução , Testes de Toxicidade Aguda , Testes de Toxicidade Crônica , Poluentes Químicos da Água/toxicidade
10.
Front Toxicol ; 3: 640183, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35295098

RESUMO

The ecological threshold of toxicological concern (ecoTTC) is analogous to traditional human health-based TTCs but with derivation and application to ecological species. An ecoTTC is computed from the probability distribution of predicted no effect concentrations (PNECs) derived from either chronic or extrapolated acute toxicity data for toxicologically or chemically similar groups of chemicals. There has been increasing interest in using ecoTTCs in screening level environmental risk assessments and a computational platform has been developed for derivation with aquatic species toxicity data (https://envirotoxdatabase.org/). Current research and development areas include assessing mode of action-based chemical groupings, conservatism in estimated PNECs and ecoTTCs compared to existing regulatory values, and the influence of taxa (e.g., algae, invertebrates, and fish) composition in the distribution of PNEC values. The ecoTTC continues to develop as a valuable alternative strategy within the toolbox of traditional and new approach methods for ecological chemical assessment. This brief review article describes the ecoTTC concept and potential applications in ecological risk assessment, provides an overview of the ecoTTC workflow and how the values can be derived, and highlights recent developments and ongoing research. Future applications of ecoTTC concept in different disciplines are discussed along with opportunities for its use.

11.
ALTEX ; 38(1): 20-32, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32970822

RESUMO

Information about acute fish toxicity is routinely required in many jurisdictions for environmental risk assessment of chem­icals. This information is typically obtained using a 96-hour juvenile fish test for lethality according to OECD test guideline (TG) 203 or equivalent regional guidelines. However, TG 203 has never been validated using the criteria currently required for new test methods including alternative methods. Characterization of the practicality and validity of TG 203 is important to provide a benchmark for alternative methods. This contribution systematically summarizes the available knowledge on limitations and uncertainties of TG 203, based on methodological, statistical, and biological consider­ations. Uncertainties stem from the historic flexibility (e.g., use of a broad range of species) and constraints of the basic test design (e.g., no replication). Other sources of uncertainty arise from environmental safety extrapolation based on TG 203 data. Environmental extrapolation models, combined with data from alternative methods, including mechanistic indicators of toxicity, may provide at least the same level of environmental protection. Yet, most importantly, the 3R advan­tages of alternative methods allow a better standardization, characterization, and an improved basic study design. This can enhance data reliability and thus facilitate the comparison of chemical toxicity, as well as the environmental classifi­cations and prediction of no-effect concentrations of chemicals. Combined with the 3R gains and the potential for higher throughput, a reliable assessment of more chemicals can be achieved, leading to improved environmental protection.


Assuntos
Alternativas aos Testes com Animais/métodos , Testes de Toxicidade/métodos , Testes de Toxicidade/normas , Animais , Peixes , Reprodutibilidade dos Testes
12.
Chemosphere ; 263: 127804, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33297001

RESUMO

Algal toxicity studies are required by regulatory agencies for a variety of purposes including classification and labeling and environmental risk assessment of chemicals. Algae are also frequently the most sensitive taxonomic group tested. Acute to chronic ratios (ACRs) have been challenging to derive for algal species because of the complexities of the underlying experimental data including: a lack of universally agreed upon algal inhibition endpoints; evolution of experimental designs over time and by different standardization authorities; and differing statistical approaches (e.g., regression versus hypothesis-based effect concentrations). Experimental data for developing globally accepted algal ACRs have been limited because of data availability, and in most regulatory frameworks an ACR of 10 is used regardless of species, chemical type or mode of action. Acute and chronic toxicity (inhibition) data on 17 algal species and 442 chemicals were compiled from the EnviroTox database (https://envirotoxdatabase.org/) and a proprietary database of algal toxicity records. Information was probed for growth rate, yield, and final cell density endpoints focusing primarily on studies of 72 and 96 h duration. Comparisons of acute and chronic data based on either single (e.g., growth rate) and multiple (e.g., growth rate, final cell density) endpoints were used to assess acute and chronic relationships. Linear regressions of various model permutations were used to compute ACRs for multiple combinations of taxa, chemicals, and endpoints, and showed that ACRs for algae were consistently around 4 (ranging from 2.43 to 5.62). An ACR of 4 for algal toxicity is proposed as an alternative to a default value of 10, and recommendations for consideration and additional research and development are provided.


Assuntos
Poluentes Químicos da Água , Medição de Risco , Poluentes Químicos da Água/toxicidade
13.
Integr Environ Assess Manag ; 16(4): 452-460, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32125082

RESUMO

The use of fish embryo toxicity (FET) data for hazard assessments of chemicals, in place of acute fish toxicity (AFT) data, has long been the goal for many environmental scientists. The FET test was first proposed as a replacement to the standardized AFT test nearly 15 y ago, but as of now, it has still not been accepted as a standalone replacement by regulatory authorities such as the European Chemicals Agency (ECHA). However, the ECHA has indicated that FET data can be used in a weight of evidence (WoE) approach, if enough information is available to support the conclusions related to the hazard assessment. To determine how such a WoE approach could be applied in practice has been challenging. To provide a conclusive WoE for FET data, we have developed a Bayesian network (BN) to incorporate multiple lines of evidence to predict AFT. There are 4 different lines of evidence in this BN model: 1) physicochemical properties, 2) AFT data from chemicals in a similar class or category, 3) ecotoxicity data from other trophic levels of organisms (e.g., daphnids and algae), and 4) measured FET data. The BN model was constructed from data obtained from a curated database and conditional probabilities assigned for the outcomes of each line of evidence. To evaluate the model, 20 data-rich chemicals, containing a minimum of 3 AFT and FET test data points, were selected to ensure a suitable comparison could be performed. The results of the AFT predictions indicated that the BN model could accurately predict the toxicity interval for 80% of the chemicals evaluated. For the remaining chemicals (20%), either daphnids or algae were the most sensitive test species, and for those chemicals, the daphnid or algal hazard data would have driven the environmental classification. Integr Environ Assess Manag 2020;16:452-460. © 2020 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Ecotoxicologia , Medição de Risco , Animais , Teorema de Bayes , Embrião não Mamífero , Peixes , Testes de Toxicidade Aguda
14.
Environ Toxicol Chem ; 38(10): 2294-2304, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31269286

RESUMO

Multiple mode of action (MOA) frameworks have been developed in aquatic ecotoxicology, mainly based on fish toxicity. These frameworks provide information on a key determinant of chemical toxicity, but the MOA categories and level of specificity remain unique to each of the classification schemes. The present study aimed to develop a consensus MOA assignment within EnviroTox, a curated in vivo aquatic toxicity database, based on the following MOA classification schemes: Verhaar (modified) framework, Assessment Tool for Evaluating Risk, Toxicity Estimation Software Tool, and OASIS. The MOA classifications from each scheme were first collapsed into one of 3 categories: non-specifically acting (i.e., narcosis), specifically acting, or nonclassifiable. Consensus rules were developed based on the degree of concordance among the 4 individual MOA classifications to attribute a consensus MOA to each chemical. A confidence rank was also assigned to the consensus MOA classification based on the degree of consensus. Overall, 40% of the chemicals were classified as narcotics, 17% as specifically acting, and 43% as unclassified. Sixty percent of chemicals had a medium to high consensus MOA assignment. When compared to empirical acute toxicity data, the general trend of specifically acting chemicals being more toxic is clearly observed for both fish and invertebrates but not for algae. EnviroTox is the first approach to establishing a high-level consensus across 4 computationally and structurally distinct MOA classification schemes. This consensus MOA classification provides both a transparent understanding of the variation between MOA classification schemes and an added certainty of the MOA assignment. In terms of regulatory relevance, a reliable understanding of MOA can provide information that can be useful for the prioritization (ranking) and risk assessment of chemicals. Environ Toxicol Chem 2019;38:2294-2304. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.


Assuntos
Consenso , Ecotoxicologia , Animais , Bases de Dados Factuais , Peixes/fisiologia , Invertebrados/fisiologia , Medição de Risco , Testes de Toxicidade Aguda
15.
Environ Toxicol Chem ; 38(8): 1606-1624, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31361364

RESUMO

Anticipating, identifying, and prioritizing strategic needs represent essential activities by research organizations. Decided benefits emerge when these pursuits engage globally important environment and health goals, including the United Nations Sustainable Development Goals. To this end, horizon scanning efforts can facilitate identification of specific research needs to address grand challenges. We report and discuss 40 priority research questions following engagement of scientists and engineers in North America. These timely questions identify the importance of stimulating innovation and developing new methods, tools, and concepts in environmental chemistry and toxicology to improve assessment and management of chemical contaminants and other diverse environmental stressors. Grand challenges to achieving sustainable management of the environment are becoming increasingly complex and structured by global megatrends, which collectively challenge existing sustainable environmental quality efforts. Transdisciplinary, systems-based approaches will be required to define and avoid adverse biological effects across temporal and spatial gradients. Similarly, coordinated research activities among organizations within and among countries are necessary to address the priority research needs reported here. Acquiring answers to these 40 research questions will not be trivial, but doing so promises to advance sustainable environmental quality in the 21st century. Environ Toxicol Chem 2019;38:1606-1624. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.


Assuntos
Conservação dos Recursos Naturais , Ecotoxicologia , Pesquisa , Conservação dos Recursos Naturais/economia , Conservação dos Recursos Naturais/métodos , Conservação dos Recursos Naturais/tendências , Humanos , América do Norte , Desenvolvimento Sustentável
16.
Environ Toxicol Chem ; 38(5): 1062-1073, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30714190

RESUMO

Flexible, rapid, and predictive approaches that do not require the use of large numbers of vertebrate test animals are needed because the chemical universe remains largely untested for potential hazards. Development of robust new approach methodologies and nontesting approaches requires the use of existing information via curated, integrated data sets. The ecological threshold of toxicological concern (ecoTTC) represents one such new approach methodology that can predict a conservative de minimis toxicity value for chemicals with little or no information available. For the creation of an ecoTTC tool, a large, diverse environmental data set was developed from multiple sources, with harmonization, characterization, and information quality assessment steps to ensure that the information could be effectively organized and mined. The resulting EnviroTox database contains 91 217 aquatic toxicity records representing 1563 species and 4016 unique Chemical Abstracts Service numbers and is a robust, curated database containing high-quality aquatic toxicity studies that are traceable to the original information source. Chemical-specific information is also linked to each record and includes physico-chemical information, chemical descriptors, and mode of action classifications. Toxicity data are associated with the physico-chemical data, mode of action classifications, and curated taxonomic information for the organisms tested. The EnviroTox platform also includes 3 analysis tools: a predicted-no-effect concentration calculator, an ecoTTC distribution tool, and a chemical toxicity distribution tool. Although the EnviroTox database and tools were originally developed to support ecoTTC analysis and development, they have broader applicability to the field of ecological risk assessment. Environ Toxicol Chem 2019;9999:1-12. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.


Assuntos
Bases de Dados Factuais , Ecotoxicologia , Poluentes Químicos da Água/toxicidade , Animais , Organismos Aquáticos/efeitos dos fármacos , Medição de Risco , Testes de Toxicidade Aguda , Testes de Toxicidade Crônica
17.
Environ Toxicol Chem ; 38(3): 671-681, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30615221

RESUMO

A database was compiled for algal Organisation for Economic Co-operation and Development (OECD) test guideline 201, for Daphnia magna OECD test guideline 202, for the acute fish toxicity (AFT) OECD test guideline 203, and for the fish embryo toxicity (FET) OECD test guideline 236 to assess the suitability and applicability of the FET test in a threshold approach context. In the threshold approach, algal and Daphnia toxicity are assessed first, after which a limit test is conducted at the lower of the 2 toxicity values using fish. If potential fish toxicity is indicated, a full median lethal concentration assay is performed. This tiered testing strategy can significantly reduce the number of fish used in toxicity testing because algae or Daphnia are typically more sensitive than fish. A total of 165 compounds had AFT and FET data available, and of these, 82 had algal and Daphnia acute toxicity data available. Algae and Daphnia were more sensitive 75 to 80% of the time. Fish or FET tests were most sensitive 20 and 16% of the time, respectively, when considered as the sole fish toxicity indicator and 27% of the time when both were considered simultaneously. When fish were the most sensitive trophic level, different compounds were identified as the most toxic in FET and to AFT tests; however, the differences were not so large that they resulted in substantially different outcomes when potencies were binned using the United Nations categories of aquatic toxicity under the Globally Harmonized System for classification and labeling. It is recommended that the FET test could be used to directly replace the AFT test in the threshold approach or could be used as the definitive test if an AFT limit test indicated toxicity potential for a chemical. Environ Toxicol Chem 2019;38:671-681. © 2019 SETAC.


Assuntos
Peixes , Testes de Toxicidade Aguda , Testes de Toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Daphnia/efeitos dos fármacos , Bases de Dados de Compostos Químicos , Embrião não Mamífero/efeitos dos fármacos , Peixes/embriologia , Guias como Assunto , Organização para a Cooperação e Desenvolvimento Econômico
18.
Environ Toxicol Chem ; 36(7): 1697-1703, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28543985

RESUMO

Investigations into the environmental fate and effects of microplastics have been gaining momentum. Small, insoluble polymeric particles are implicated by scientists in a wide variety of studies that are used to suggest a potential for widespread impacts in freshwater and marine pelagic and sediment environments. An exponential growth in scientific publications and an increase in regulatory attention have occurred. However, despite these efforts, the environmental hazard of these particles is still unknown. To evaluate the hazard of microplastics within a risk assessment context, we need a way to evaluate the quality of experimental studies. We performed a thorough review of the quality and focus of environmental microplastic research, to understand the methodologies employed and how this may assist or distract from the ability of environmental risk assessors to evaluate microplastics. We provide guidance to improve the reliability and relevance of ecotoxicological studies for regulatory and broader environmental assessments. Nine areas of needed improvement are identified and discussed. Important data gaps and experimental limitations are highlighted. Environ Toxicol Chem 2017;36:1697-1703. © 2017 SETAC.


Assuntos
Editoração , Pesquisa , Animais , Daphnia/efeitos dos fármacos , Daphnia/crescimento & desenvolvimento , Monitoramento Ambiental , Peixes/crescimento & desenvolvimento , Peixes/fisiologia , Tamanho da Partícula , Plásticos/química , Plásticos/toxicidade , Medição de Risco , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade , Zooplâncton/efeitos dos fármacos , Zooplâncton/crescimento & desenvolvimento
20.
Environ Toxicol Chem ; 34(6): 1425-35, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25920411

RESUMO

A need exists to better understand the influence of pH on the uptake and accumulation of ionizable pharmaceuticals in fish. In the present study, fathead minnows were exposed to diphenhydramine (DPH; disassociation constant = 9.1) in water for up to 96 h at 3 nominal pH levels: 6.7, 7.7, and 8.7. In each case, an apparent steady state was reached by 24 h, allowing for direct determination of the bioconcentration factor (BCF), blood-water partitioning (PBW,TOT), and apparent volume of distribution (approximated from the whole-body-plasma concentration ratio). The BCFs and measured PBW,TOT values increased in a nonlinear manner with pH, whereas the volume of distribution remained constant, averaging 3.0 L/kg. The data were then simulated using a model that accounts for acidification of the gill surface caused by elimination of metabolically produced acid. Good agreement between model simulations and measured data was obtained for all tests by assuming that plasma binding of ionized DPH is 16% that of the neutral form. A simpler model, which ignores elimination of metabolically produced acid, performed less well. These findings suggest that pH effects on accumulation of ionizable compounds in fish are best described using a model that accounts for acidification of the gill surface. Moreover, measured plasma binding and volume of distribution data for humans, determined during drug development, may have considerable value for predicting chemical binding behavior in fish.


Assuntos
Cyprinidae/metabolismo , Difenidramina/toxicidade , Brânquias/efeitos dos fármacos , Antagonistas dos Receptores Histamínicos H1/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Cromatografia Líquida de Alta Pressão , Difenidramina/sangue , Difenidramina/química , Brânquias/metabolismo , Antagonistas dos Receptores Histamínicos H1/sangue , Antagonistas dos Receptores Histamínicos H1/química , Humanos , Concentração de Íons de Hidrogênio , Cinética , Modelos Biológicos , Espectrometria de Massas em Tandem , Água/química , Poluentes Químicos da Água/sangue , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA